sQTL
Summary Table
NAME | CITATION | YEAR |
---|---|---|
LeafCutter | Li YI, Knowles DA, Humphrey J, Barbeira AN, ...&, Pritchard JK. (2018) Annotation-free quantification of RNA splicing using LeafCutter Nat. Genet., 50 (1) 151-158. doi:10.1038/s41588-017-0004-9. PMID 29229983 | 2018 |
THISTLE | Qi T, Wu Y, Fang H, Zhang F, ...&, Yang J. (2022) Genetic control of RNA splicing and its distinct role in complex trait variation Nat. Genet., 54 (9) 1355-1363. doi:10.1038/s41588-022-01154-4. PMID 35982161 | 2022 |
sQTLseekeR | Monlong J, Calvo M, Ferreira PG, Guigó R. (2014) Identification of genetic variants associated with alternative splicing using sQTLseekeR Nat. Commun., 5 (1) 4698. doi:10.1038/ncomms5698. PMID 25140736 | 2014 |
LeafCutter
- NAME : LeafCutter
- SHORT NAME : LeafCutter
- FULL NAME : LeafCutter
- DESCRIPTION : Leafcutter quantifies RNA splicing variation using short-read RNA-seq data. The core idea is to leverage spliced reads (reads that span an intron) to quantify (differential) intron usage across samples.
- URL : https://davidaknowles.github.io/leafcutter/
- TITLE : Annotation-free quantification of RNA splicing using LeafCutter
- DOI : 10.1038/s41588-017-0004-9
- ABSTRACT : The excision of introns from pre-mRNA is an essential step in mRNA processing. We developed LeafCutter to study sample and population variation in intron splicing. LeafCutter identifies variable splicing events from short-read RNA-seq data and finds events of high complexity. Our approach obviates the need for transcript annotations and circumvents the challenges in estimating relative isoform or exon usage in complex splicing events. LeafCutter can be used both to detect differential splicing between sample groups and to map splicing quantitative trait loci (sQTLs). Compared with contemporary methods, our approach identified 1.4-2.1 times more sQTLs, many of which helped us ascribe molecular effects to disease-associated variants. Transcriptome-wide associations between LeafCutter intron quantifications and 40 complex traits increased the number of associated disease genes at a 5% false discovery rate by an average of 2.1-fold compared with that detected through the use of gene expression levels alone. LeafCutter is fast, scalable, easy to use, and available online.
- CITATION : Li YI, Knowles DA, Humphrey J, Barbeira AN, ...&, Pritchard JK. (2018) Annotation-free quantification of RNA splicing using LeafCutter Nat. Genet., 50 (1) 151-158. doi:10.1038/s41588-017-0004-9. PMID 29229983
- JOURNAL_INFO : Nature genetics ; Nat. Genet. ; 2018 ; 50 ; 1 ; 151-158
- PUBMED_LINK : 29229983
THISTLE
- NAME : THISTLE
- SHORT NAME : THISTLE
- FULL NAME : testing for heterogeneity between isoform-eQTL effects
- DESCRIPTION : THISTLE (testing for heterogeneity between isoform-eQTL effects) is a transcript-based splicing QTL (sQTL) mapping method that uses either individual-level genotype and RNA-seq data or summary-level isoform-eQTL data.
- URL : https://yanglab.westlake.edu.cn/software/osca/#THISTLE
- TITLE : Genetic control of RNA splicing and its distinct role in complex trait variation
- DOI : 10.1038/s41588-022-01154-4
- ABSTRACT : Most genetic variants identified from genome-wide association studies (GWAS) in humans are noncoding, indicating their role in gene regulation. Previous studies have shown considerable links of GWAS signals to expression quantitative trait loci (eQTLs) but the links to other genetic regulatory mechanisms, such as splicing QTLs (sQTLs), are underexplored. Here, we introduce an sQTL mapping method, testing for heterogeneity between isoform-eQTL effects (THISTLE), with improved power over competing methods. Applying THISTLE together with a complementary sQTL mapping strategy to brain transcriptomic (n = 2,865) and genotype data, we identified 12,794 genes with cis-sQTLs at P < 5 × 10-8, approximately 61% of which were distinct from eQTLs. Integrating the sQTL data into GWAS for 12 brain-related complex traits (including diseases), we identified 244 genes associated with the traits through cis-sQTLs, approximately 61% of which could not be discovered using the corresponding eQTL data. Our study demonstrates the distinct role of most sQTLs in the genetic regulation of transcription and complex trait variation.
- COPYRIGHT : https://creativecommons.org/licenses/by/4.0
- CITATION : Qi T, Wu Y, Fang H, Zhang F, ...&, Yang J. (2022) Genetic control of RNA splicing and its distinct role in complex trait variation Nat. Genet., 54 (9) 1355-1363. doi:10.1038/s41588-022-01154-4. PMID 35982161
- JOURNAL_INFO : Nature genetics ; Nat. Genet. ; 2022 ; 54 ; 9 ; 1355-1363
- PUBMED_LINK : 35982161
sQTLseekeR
- NAME : sQTLseekeR
- SHORT NAME : sQTLseekeR
- FULL NAME : sQTLseekeR
- DESCRIPTION : sQTLseekeR is a R package to detect splicing QTLs (sQTLs), which are variants associated with change in the splicing pattern of a gene. Here, splicing patterns are modeled by the relative expression of the transcripts of a gene.
- URL : https://github.com/jmonlong/sQTLseekeR
- TITLE : Identification of genetic variants associated with alternative splicing using sQTLseekeR
- DOI : 10.1038/ncomms5698
- ABSTRACT : Identification of genetic variants affecting splicing in RNA sequencing population studies is still in its infancy. Splicing phenotype is more complex than gene expression and ought to be treated as a multivariate phenotype to be recapitulated completely. Here we represent the splicing pattern of a gene as the distribution of the relative abundances of a gene's alternative transcript isoforms. We develop a statistical framework that uses a distance-based approach to compute the variability of splicing ratios across observations, and a non-parametric analogue to multivariate analysis of variance. We implement this approach in the R package sQTLseekeR and use it to analyze RNA-Seq data from the Geuvadis project in 465 individuals. We identify hundreds of single nucleotide polymorphisms (SNPs) as splicing QTLs (sQTLs), including some falling in genome-wide association study SNPs. By developing the appropriate metrics, we show that sQTLseekeR compares favorably with existing methods that rely on univariate approaches, predicting variants that behave as expected from mutations affecting splicing.
- COPYRIGHT : https://creativecommons.org/licenses/by-nc-nd/4.0
- CITATION : Monlong J, Calvo M, Ferreira PG, Guigó R. (2014) Identification of genetic variants associated with alternative splicing using sQTLseekeR Nat. Commun., 5 (1) 4698. doi:10.1038/ncomms5698. PMID 25140736
- JOURNAL_INFO : Nature communications ; Nat. Commun. ; 2014 ; 5 ; 1 ; 4698
- PUBMED_LINK : 25140736